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In memory of Roger R i c h "  

Abstract We consider cnmer transfer matrices of the six-vertex d e l  and of its spin-1/2 
generalizations rmncated to a finite lattice, in the anti-ferromagnetic regime. We show that, in 
the =se of finite size appmximatitin, the low-lying eigenvectors approximate weight vectors 
of a level-1 highest weight Uq (612) module, whilst the truncaled comer transfer manices 
approximate the role of a derivation operato;. Our method is to first use the theory of the 
crystal base to prove the result exactly at q = 0, and then extend to q # 0. We also consider 
the relationship Ween truncated comer transfer mauices, the vertex operator conshuction of 
Frenkel and ResheWrhin, and Bater's original argument for the propelties of crms. 

1. Introduction 

Comer transfer mahices (CTM), invented by Baxter [1,2], have proved to be an effective 
method for the evaluation of one-point functions in exactly solved lattice models of statistical 
mechanics, starting with the eight-vertex model [I], followed by the hard hexagon model 
[3] and its generalizations [4]. In the latter work, configuration sums appeared which 
were identified as characters of V i o r o  algebras [5] and in particular those of the discrete 
minimal series [6]. These mysterious connections led to the discovery of hierarchies of 
solvable lattice models in two dimensions [7,8] and of many beautiful connections with 
infinite dimensional algebras [9-111. 

Most of these connections were at the level of characters, weight-space multiplicities 
and branching coefficients. This is sufficient for the calculation of one-point functions since 
the CTMs of 'interaction around a face' models are constructed so that the diagonalizing 
wansformation commutes with the state variable at the centre site. The calculations become 
thereby combinatorial and lead naturally to the use of q-series [ 121. But it was also observed 
that the multiplicities of the CTM eigenvalues of the six-vertex model and its generalizations 
are equal to the weight-space multiplicities of irreducible highest-weight representations 
of certain affine Lie algebras [ll].  Moreover, the actual configurations used to label the 
zero-temperature eigenvectors of the CTM also label the crystal base vectors [13,14] of the 
corresponding representations 115-171. This is a vital clue, since the crystal base theory, 
which is the q = 0 limit of the quantum deformation of the commutators, contains complete 
information about the action of the Chevalley generators even when q # 0. If one wants to 
employ CTMS beyond the calculation of local height probabilities, precise information about 
the eigenvectors and their algebraic properties is needed, and the key is the use of quantum 
affine algebras. 

0305-4470/94/020361+18$0750 @ 1994 IOP Publishing Ltd 361 



362 B Davies 

The six-vertex model is related to the quantum A n e  algebra Uq @) of Drinfeld and 
Jimbo [18,19], since its Boltzmann weights form the R-matrix which intertwines tensor 
products of two-dimensional representatiom of U; 0. A recent paper by Foda and Miwa 
[20] on the six-vertex CIU, and its connection with this algebra, has been the starting point 
for new and rapid progTess in a number of different directions. (It should be noted that 
this work is in the anti-ferromagnetic regime-equivalent to regime ITI for the ABF models.) 
Foda and Miwa showed that the eigenvectors of the six-vertex CTM may be identified with 
the basic (level-I) representations of U, m, and the CTM with a derivation operator of 
that algebra. Stated more simply, the quantum affine algebra provides raising and lowering 
operators for the CIU, and the importance of this cannot be overstated. For the X X Z  model 
itself, this identification has been used to diagonalize the XXZ Hamiltonian for an infinite 
chain [21], and to obtain expressions for the n-point correlation functions [22], using the 
powerful machinery of representation theory and vertex operators 1231. 

Under the natural assumption that these results cany over to models associated 
with higher-spin representations of U, 0 (which we shall demonstrate in this paper), 
constructions of the state spaces have been given for higher spin [24] and for the RSOS 
models [25]. The latter paper uses a procedure somewhat analogous to the Goddard-Kent- 
Olive coset construction of the discrete minimal series of Viasoro algebras [26]. Thus the 
occurrence of Virasoro characters comes as no surprise, even though the OK0 construction 
does not carry through to the quantum &ne case and there is no obvious 4-deformed 
analogue of the Vrasoro algebra. 

These developments highlight the importance of further study of the precise connections 
between Cmls and quantum affine algebras. This is the object of the present paper. The 
main statement of [20] is a conjecture for two reasons: (i) it assumes that the anti- 
ferromagnetic CI'M Hamiltonian can be renormalized in the thermodynamic limit to produce 
a well-defined infinite-dimensional operator acting on a semi-infinite tensor product of spin 
one-half U; modules, and (ii) the necessary expansions are checked only to the first 
few orders in a perturbative expansion. These difficulties are pointed out in the cited paper, 
as are the technical problems preventing a proof that renormalization is possible to every 
order in a perturbative expansion. 

In these circumstances it is natural to think in terms of low-temperature expansion using 
increasingly large but finite systems. Near the zero-temperature limit, such expansions are 
dominated by terms which differ from the ground state at only a finite number of sites, 
linked to a reference site by the exact Hamiltonian. We use this perhubative approach our 
method is to truncate the semi-infinite spin chain on which the CTMs operate to a chain of 
length N ,  and then investigate the properties of these truncated operators as functions of 
4 and N .  The theory of the crystal base (the q = 0 limit) of infinitedimensional highest- 
weight modules has already been investigated using this approach by Jimbo eta1 [16]. We 
recall some necessary details of their work in section 3, and present some new results. 
Here we point to a most remarkable feature. The basic object is the tensor product of N 
copies of a level-0 module. As such, it must retain the level zero. Notwithstanding, it 
is shown in [16] that a certain subset of its crystal base vectors serves as a subset of the 
crystal base of a level-Z module. More recent investigations [27l demonstrate that this is 
intimately connected with the vertex operator construction of Frenkel and Reshetikhin [23]. 
The truncation to finite dimension allows expansion in powers of the deformation parameter 
q about q = 0 without problems of infinite renormalization. So we first compare the spectra 
of the truncated CTMs with the weight vectors and grading levels of the standard modules at 
q = 0. The identification thus made-which is exact-is then extended to q # 0, working 
always modq' for some integer L which increases linearly with N .  
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The necessity for a new approach becomes apparent if one attempts to find the 
eigenvectors of the CTMs directly in the N + 00 limit. One can try to expand in terms of the 
infinite set of paths ’P(A)-for example, such an expansion is considered in some detail in 
[ZO]. It becomes clear from that paper that the coefficients of the paths are not normalizable 
& sequences. The point is that the anti-ferromagnetic ground state is ‘infinitely far removed’ 
from the bare s’dtes used in the expansion and an infinite renormalization is required. This 
is fundamentally different from the ferromagnetic regime, for which eigenvectors may be 
constructed as t z  sequences [28,29], because the ground state is a single path. Once the anti- 
ferromagnetic eigenvectors are identified with weight vectors of standard U, @ modules, 
representation theory provides a unique inner product which respects the algebra action and 
for which ( U A ~ U A )  = 1, and the normalization problem is resolved. What matters is that 
any q-expansion which arises from a low-temperature expansion should be identical to that 
obtained from representation theory, once the appropriate identifications are made. 

Before embarking on the details of the present work, we briefly discuss the equivalent 
problem for the king model. This differs in one important respect: there is a simple 
technique for diagonalizing the finite-size CIU (see [28] for a discussion of the m, rather 
than its Hamiltonian generator). So the commuzation relations, on which the solution is 
founded in both cases, are exact for the king case even with finite N .  Still, one cannot give 
tractable general expressions for the excitation energies except when N -+ W. Moreover, 
the structure of the ground state is exceedingly complicated. It is created from the ‘bare 
vacuum’ by applying the product of all N fermion annihilation operators-+ simple highest- 
weight formula-but it should not be forgotten that this ground state is also not normalizable 
as an t z  sequence. The only new feature in the present case is that we do not have exact 
linear algebra formulae for the derivation of the quantum algebra since there is no derivation 
for finite N .  

In both cases the CTM is used via a process of identification which is related to a non- 
uniform convergence property. To extract the essential properties of the eigenstates, one 
takes the limit N --f 00 before using them 1301. The actual ground-state energy does not 
enter into any calculation-it is just part of an infinite renormalization. In the king case 
this does not seem mysterious since the fermion operators are so simple to understand, 
and one can work with the finite system up to any convenient point in the calculation. In 
the quantum algebra case, one must make contact with representation theory much more 
quickly. An important ingredient in this is the vertex operator construction, which gives a 
description of the local properties of the eigenvectors using the eigenvectors themselves. 

The plan of this paper, and the main results, are as follows. In section 2 we introduce 
the necessary definitions of the quanhnn affine algebras. We also define the truncated CTMS 
and derive commutation relations from which their properties follow. These commutation 
relations are obtained for arbitrary spin, thus generalizing [ZO], which is resuicted to spin 
one-half, and explaining how the commutation relations emanate from the intertwining 
property of R matrices. Section 3 uses the theory of the crystal base to prove that the 
eigenvectors of the truncated CTMs, at q = 0, are the crystal base vectors of the standard 
U, f&) modules up to grading level sz N / 2 ,  and that the eigenvalues provide the grading. 
We also resolve a problem from [16] about the relationship between the action of the 
modified Chevalley generators in the two crystal bases (‘direction of the arrows’). These 
results are exact. 

In section 4 we extend considerations to q # 0. We show that in this case the 
eigenvectors are weight vectors, modql. where L -+ 00 in the l i t  of an infinite chain. 
This depends on more than just the basic commutation relations: crystal base theory is 
crucial for showing that the eigenvectors are in one-to-one correspondence with the weight 
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vectors at each grading level. Without this, the interpretation of physical problems using 
representation theory would be unclear: even though the eigenvectors approximate weight 
vectors: the question of completeness would remain. For precisely this reason we consider 
in section 5 the relationship between the eigenvectors of two truncated CTUS on chains 
whose lengths differ by one. This relationship turns out to be equivalent to the vertex 
operator construction, again modqL. 

Section 6 is restricted to the six-vertex case. We revisit Baxter's original argument [31], 
whereby he found the remarkable exponentiation property of (JIMs via arguments about the 
ground state of the corresponding spin chain. The same anti-ferromagnetic XXZ spin-chain 
ground state was constructed, using representation theory, in a recent work [21]. We show 
that the two arguments are equivalent-perhaps not surprising in retrospect, but nevertheless 
illuminating. Section I contains some concluding comments, particularly related to the 
calculation of physical quantities. 

2. The algebra Up(&) and the CTM as its derivation 

We are concerned with models defined on spin chains which act on tensor products whose 
components (position in the tensor product) correspond to the sites of the chain. For the 
quantum algebras we follow Jimbo [32]. U; @) is generated by ei, fi, ti = qh', (i = 0, I), 
which satisfy the defining relations 

p f  - -Ai j f .p tiej = qA; je j t i  E J - q  I '  

2 -2 
2 > .  

The co-multiplication for the Hopf algebra smcture is defined by 

A(ei) = ei 8 1 +ti  63 e; 

A(fi) = f i 8 t ; '  + 1 8 fi 
A($) = ti @ t i .  

and the formula for the antipode is 

(2.1) 

(2.2) 

n(eO = -t;'ei a(fi) = -fiti a(ti) = t:'. (2.4) 

To obtain the full quantum affine algebra U, (&), we need to add the generator qd .  d is 
the derivation, and it satisfies the relations 
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Our notations for d 2  are as follows. The Cartan subalgebra Fj = span[ho, hl ,  d }  and 
rue, & I  are the roots. They are related to the fundamental weights by a. = 2Ao - 2A1 + 8, 
ai =  AI - 2110; we also write p = Ao + Al. The invariant form on Fj' is given 
by Z(Ai, A j )  = &i81j ,  (Ai,8) = 1, (8,s) = 0. The weight lattice and its dual are 
P = ZAo I3 ZAI eB Z8 and P' = Zho eB Zhl I3 Zd, with (Ai, h j )  = S i j ,  (A i ,d )  = 0, 
(8, hi)  = 0 and (8, d )  = 1. We identify Pa with a subset of P via ( , ), so that ai = hi 

The representations we use are built on the basic ( I  + 1)-dimensional modules V, of 
U, (&). We regard the latter as a subalgebra of U; by the identification e = el ,  
f = f i ,  i = t l .  Then the basic U, (sh) modules V,, with weight vectors Ut, (k = 0, ..., E ) ,  
are defined by the actions 

1 

and 2p = 4d + hi. 

where [n] = (4" -q-")/(q -q- ' )  and y = 0 if k -= 0 or k =- E .  From these are constructed 
irreducible finitedimensional representations V(1, x )  of U; ( 5 3 ,  with multiplicative spectral 
parameter x ,  obtained by the identification 

eo+ x f  f~ -+ x-le  to t-'el + e fi + f t, + t .  (2.7) 

The R-matrices k(x, y )  which satisfy the Yang-Baxter equations with trigonometric 
paramenisation are intertwiners of tensor products V(1, x )  8 V(E, y )  and V(1, y )  @ V(1, x ) .  
Details may be found in [32]; here we recall the facts that are of immediate interest. The 
intertwining property entails k(x, y ) A ( a )  = A(rr ) i (x ,  y ) .  for' all a E U; m. Together 
with a choice of normalization, the intertwining property uniquely determines i ( x ,  y ) .  The 
formula is given in [33] in terms of the Clebsch4ordan decomposition of the tensor product 
V, 8 q as U, (sh) modules: V, 8 rr VU I3 VU-2 8.. . I3 VO. Let P, denote the, projection 
operator into the component V%-zr of this decomposition. Then 

Corresponding to such a matrix k ( x ,  y), spin chains are built from two-site operators 
obtained by expansion around x = y: 

i ( x ,  y )  = I + u ~ j  +. . . x / y  = e u  U + 0. (2.9) 

We have attached a subscript j to Hj in anticipation of the fact that it will operate at the 
positions j + 1, j of the chain. (We follow the convention of [29] in numbering the sites 
from right to left.) For this reason, we shall henceforth attach a second subscript to the 
generators ei, fi, ti, writing ei.j.  &, ii,j. Using the notation that P,,j stands for the action 
of P, on the tensor product V, Q K at sites j + 1, j we have 

(2.10) 
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We need the commutation relations between Hj and the coproduct of the generators 
e;, 5,  onto sites j + 1,  j .  For A(et) ,  A( f1)  this is trivial: the use of the projectors P, 
in the construction of &x, y )  comes from the fact that the intertwining action applies in 
particular to the subalgebra U, (812). whose action on the tensor product does not depend 
on the spechal parameters. Therefore 

(2.1 1) 

In fact, Hj is just a polynomial in the Casimk operator C of U, (&) acting on adjacent 
pairs of sites. We take for C the definition 

c = qt +q-'t-' + (4 - q-')*fe (2.12) 

and note that it has the value (q'+' + q-l-l) on the basic module V,. Writing Cj to stand 
for A(C) acting on the tensor product at sites j 4- 1, j we have 

Hj = &(Cj) (2.13) 

where &(x)  is a polynomial of degree 1, determined from (2.10), which gives the relations 

r = 0,. . . , l .  21-21+2 

+ 4- u-21+2 
&(421-2r+l (2.14) 

The intertwining conditions for eo. fo, which are the nub of the question of relating c r ~ s  
to the derivations of U, m, may be written explicitly as [32] 

i ( x ,  Y ) ( X f  @ 1 + t-l @ Yf) = ( Y f @  1 + t - ' @  x f ) i ( x ,  y )  

k(x, y)(x-'e @ t + 1 @ y-'e) = (y-le 8 t + 1 @ x - b ) i ( x ,  y ) .  

Making the substitution x = yeU into these equations and using the definition of the Hj, we 
find the commutation relations 

[Hi ,  eo,j+i @ 1 j  + to.j+i @ e0.J = -eo.j+l @ I j  + to.j+i @ eo.j, 

(2.1.5) 

(2.16) 
I H j , f o . j + l @ t o s f + I j + 1 @ ~ , j l = f o . j + l @ t ~ ~ . - l j + l @ f o . j .  

Consider now the spin chain H = cy:' orjHj, with arhitrary coefficients q, which 
for the iterated co-product acts on the N-fold tensor product yeN. We shall write ai ,  f;, 

of the generators; explicitly 

N 

& = x t i . N  '8 " I  @ kj+1 @ e;,j @ I j -1  @ ." @ 11 ,  
j=l 

(2.17) 
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Equations (2.81 1) show that the chain H is U, (612) invariant, even with arbitrary coefficients 
uj. That is, 

[ H ,  811 = 0 [ H ,  fi] = 0. (2.18) 

For i = 0, matters are slightly more complicated. To obtdn the CTM generator, we 
choose cyj = j ,  and 

(2.19) 

Then most of the terms in (2.16) sum to the definitions of io and, $0, so that we find 

This is a vital result: provided there is a satisfactory way to interpret the infinite N limit 
in a regime where the boundary terms on the RHS of (2.20) may be neglected, we recover 
the result that H C T M , ~  acts as the derivation in the algebra U, 0, verifying the relations 
(2.5). We emphasise that our use of (2.20) at the crystal base does not involve the boundary 
term, since we restrict the paths to those that satisfy the boundary conditions when q = 0. 
Also note that although the boundary term diverges linearly as N --f CO (like all the terms 
in HCTM,N), this has no effect on our arguments in sections 4 and 5: N q N  + 0 just as well 
as q N  does as N + CO. 

For the six-vertex case ( I  = 1). the two site operators Hj of (2.9) are (to within an 
additive constant) 

where U;, U;, U; are the usual Pauli spin matrices. The XXZ four-fermion coupling 
parameter A is related to the quantum algebra deformation q by 

A = (4 + q - 9 / 2  (2.22) 

and -1 c q c 0 in the anti-ferromagnetic regime, A c -1. The term involving (U;+] -U,?) 
is the well known boundary term which is responsible for U, (512) symmetry in XXZ spin 
chains [34,35]. It gives an additional contribution to the more usual six-vertex (3TM generator 
PI1 

The total spin operator S = cj”, U; commutes with both H ~ T M , N  and H x m , ~ ,  but there is 
in general no simple relation of the form UHCTM,N - b H m . N  = S. However, as observed 
by Foda and Miwa [ZO], we do have such a relationship in the anti-ferromagnetic regime, 



368 B Davies 

provided that suitable renormalized operators may be defined in the thermodynamic limit, 
namely, 

m 

H-,m = 2Hcr~,m -k S 2s = UT. (2.24) 
k=l 

The commutation relations for are 

I ^  

[ ~ x x z . m ,  e;] = ei [Hxuz,mo, j.1~ -5. 
So H x x ~ , ~  acts as the derivation in the principal grading whereas H ~ M , ~  = d is the 
derivation in the homogeneous grading. Some illustrative numerical computations for the 
six-vertex case are reported in a preliminary version of this paper [36]. 

For real q,  141 e 1, the coefficient of P,,j in (2.10) is non-negative for all r .  It follows 
that Hj and therefore H ~ , N  are non-negative operators. Consider the action of H-,N on 
either of the vectors IJO @ . . . @ IJO or U! @ . . .@ VI.  Since uo @ uo and I J ~  @ U, are the highest- 
and lowest-weight vectors in V @ &, Hj is zero on them. Therefore H-,N has a zero 
eigenvalue and we have found two of the zero eigenvectors: IJO 8. . . @U,, and ut @ . . .@ vi. 
But these are also highest- and lowest-weight vectors in V,ON, in fact of the largest (14 (d,) 
multiplet of dimension IN + I. By the U, (d2) symmetry of H ~ M J .  this mukiplet of 
basic ferromagnetic states is the zero eigenspace of H ~ , N .  The maximum eigenvalue of 
H ~ M , N  is an anti-ferromagnetic ground state, and the various choices we have made in the 
definitions ensure that this becomes a highest-weight vector Ihwv) of some module V(A) 
in the limit N + CO. 

3. The crystal base 

The crystal base is the q + 0 limit of the theory. The essential simplification is that 
the basis vectors of tensor products of irreducible modules are just the elementary tensor 
products. In this limit the operators Hj take the simple form 

and H & ~ , ~  = [&M.N],,, is diagonal, as an operator in v;"", on the basis vectors 
utl, 8 . ' .  @ ut, .  The action of the generators et, fi, ti, becomes undefined in this limit, 
but Kashiwara showed how to define modified Chevalley generators Z;, so that their 
action on the crystal base vectors has an exact correspondence with the action of the actual 
generators 113,141. This correspondence is very powerful, and makes it possible to prove 
very general results from more combinatorial considerations at the crystal base. 

For the module K, we may use the base vectors { u k }  also as the (upper) crystal base 
vectors, but we shall denote them as { b k )  when so doing. (Shictly speaking, bk represent 
residue classes modulo the crystal lattice.) We also use the convention that Bi, B(A), 
etc denote the crystal base of modules V, V(A). The action of the modified Chevalley 
generators on Bl is given by 
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with ba = 0 if k < 0 or k > 1. Also ZO = 3, & = Zl. These actions may be represented 
as a coloured oriented graph in which each node is a crystal base vector, and the nodes are 
joined by arrows labelled by the 'colour' i .  The direction of the arrow indicates the action 
of j. 

Figure 1. Crystal graphs Bi D BI for I = 1.2, as U; (&) algebra. 

The rule for the crystal graph of the tensor product of two modules V, V' is as follows. 
For each i ,  a crystal base vector b is part of a string through b spanning an irreducible 
U, ( d 2 )  module for colour i. Introduce length functions l f (b )  for these strings with the 
meaning that IT(b) (respectively, Z,:(b)) is the length of the part of the string produced by 
applying Zi (respectively, j) to b. The crystal base B €3 B' is the set of products b 8 b'. 
The action of A(&) on b 8 b' gives either the product (&b) 8 b' or b @I (Zib') (similarly for 
j). The actual result depends on the i-string lengths through b and b'. The rule is 1321 

(3.3) 

Irreducible modules have crystal graphs which are connected so that crystal graphs of tensor 
products illustrate pictorially the irreducible pieces of the decomposition. 

As an example relevant to the operators Hj of (4.1), the crystal graphs are shown 
in figure 1 for the tensor product Bi 8 B,, as U; modules, for I = 1,Z. One sees 
clearly that the tensor product is irreducible g.s a U: (z) module but reducible as a U, (sh) 
module of either colour 0 or 1. Hj ,  which is diagonal for q = 0, takes different integer 
values on each irreducible component (connected subgraph) of the decomposition. A simple 
computation shows that the value H ( j ,  j ' )  of Hj on bj 8 bj. is the energy function of [16]: 

j + j ' > l  H ( j ,  j ' )  = 11' 
1 - j  j + j ' ( l .  (3.4) 

Jimbo ef a[ have considered the crystal bases of tensor products y@" as finite-size 
approximations to the crystal base of the irreducible level-1 modules of U, (z) [16]. 
As we noted in the ineoduction, this seems somewhat paradoxical, since a finite tensor 
product of level-0 modules is necessarily of level 0. But there is no 'paradox provided one 
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notes carefully what is actually proved in 1161. Here we show that HkM," is a finitesize 
approximation to the derivation in this same construction. But first we recall the necessary 
results from [16]. Let Ao, A1 be the fundamental weights of U, @& Then the highest 
weights of the irreducible level4 modules (k& + ( I  - k)Al I 0 6 k < l ) ,  and they are in 
correspondence with the basis (uk} of Vj. 

The first major result of [I61 is the construction of a crystal base for the modules V(A) 
as sets of semi-infinite paths ?(A), (pi I 0 < pj 6 I ,  j > 11. For a given highest weight 
A, the 'ground state' path is defined by 

(3.5) 

Then the set ?(A) consists of all paths which differ from the ground state path at only a 
finite number of places. ?(A) is a crystal base for V(A), and the weight of a path is 

The second major result of [ 161 is that the action of the modified Chevalley generators 
on any particular path is equivalently stated in terms of the action on the finite tensor 
product y@" for sufficiently large N .  (Specifically, on the subset of paths for which 
PN = PN.) However, there is a problem that the roles of Zi and are interchanged in this 
correspondence. This interchange is avoided here by numbering the sites of the chain from 
right to left. To see why, let q denote the automorphism of U; m given by 

p(ei) = fi dfi) = ei  ti) = t ~ '  (i = 0, 1). (3.7) 

and let (n, I$@") denote the representation of U; m on the tensor product Fa"" which we 
have employed via the standard co-multiplication (2.3) and the module action (2.4). The 
map q is not a Hopf-algebra homomorphism, and the U; (&) representation A o q  is related 
to n by transposition, 

(n 0 q)(ei)(ui,  @ ... @ vi,) = n(fi)(uiN @ ... @ vi,) 

(n o q)( f i ) (u i ,  @ . . . @ vi,) = n(eiKui, @ . . . @ vi,). 
(3.8) 

This result is also seen in the fact that the vertex operator consmction, for highest-weight 
modules (rather than lowest-weight andor dual modules), is an isomorphism of B ( A )  8 El 
with B(A'), and the semi-infinite tail is to the left as the isomorphism is iterated €271. 

We turn now to the connection between the spectrum of HkM," and the weights of 
paths in P(A). A simple calculation shows that the value of H&.", on the ground state 
vector in BPN corresponding to PA, is 

N ( N  - 2)1/4 + N k / 2  

( N  - !)'1/4 + (N  - 1)(1 - k ) / 2  

for N even 

for N odd. 
(3.9) E N ( P A )  = 

Therefore, attains its maximum value in BPN on the highest-weight path of B(lA0) 
or B(IA1) according to whsther N is even or odd. E we simply diagonalize HmM,~ ,  without 
imposing boundary conditions, the low-lying eigenvectors approximate the weight vectors 
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of either V(ZA0) or V(lA1). To obtain the weight vectors of all the level-1 modules, we 
must impose the boundary condition P N  = J ~ N  using the appropriate ground state path 
PA (exactly as in 1161). That is, we define the subspace WA c V("" to be the span of 
vectors satisfying this boundary condition and we diagonalize the restriction of H-.N to 
WA rather than the full matrix. Since H&M,N is diagonal, the WA are already invariant 
subspaces and there are no neglected terms when q = 0. Then we have the corresponding 
EA c E,@", and it is trivial to show that H&M,N attains its maximum value in BA on the 
highest-weight path for B(A), irrespective of whether N is even or odd. 

Consider the set of paths in "(A) which agree with the ground-state path j i ~  at site 
N and identify them with the corresponding vectors in BA c E@". The vectors are of the 
form bkM @ bkp-l 9. . . @ bk, . We may show that the commutation relations (2.28), restricted 
to EA, are exact at the crystal base: [H&,, 201 = 20, IHgTM,,, fo] = -&. Equivalently, 
in this subspace 670 and j% are raising and lowering operators for H&M,N. We give the 
argument for 6. Its action is to change just one of the crystal base vectors, at position 
j # N .  From the CO-associativity of the co-product, we know that the action of fo on the 
adjacent pairs bkj+! @ bk, and bki @I bk,-! is exactly the same as its action when the pair is 
embedded in the full tensor product bk, @ bkN-, 8 . . . @ 4,. That is, 

(3.10) 

and the rules (4.3) give the conditions for this, in terms of the variables p j ,  as p j  +pj+l 4 I ,  
pj-1 + pj > 1 .  Applying (4.4) we see that the energy of the state is decreased by 1 by the 
action of j%, which was to be proved, and we have: 

Proposition 1. Let A = kAo + (1 - k)Al andfuc N. For the level4 U, @) module V(A), 
the weights (4.6) of those paths in P(A) which agree with the ground state path PA at sites 
j 2 N are correctly given ifthe energy term is replaced by -S(E(p) - E(P)) .  Here E ( p )  
are the eigenvalues of HAM," diagonalized in the subspace BA. 

We want to prove a version of this proposition which takes account of the grading of 
the standard modules, 

(3.11) 

where Va,m are weight spaces of weight A - ma, - n& The weight spaces of B(A) are 
spanned by vectors generated by acting with multinomials fo 'f, . . . &"If l '  on the highest- 
weight vector bkK @ .  . . @ b&k @ bk. The integers nl and mi may be zero. As we perform 
each operation f;l", the left-most position in the tensor product at which a component differs 
from its value in the ground state vector will increase, but only by unity. So any crystal 
base vector in the crystal base B, of V, cannot differ from the ground state vector beyond 
site 2n. Since we already know from [16] that the multiplicities of paths with any given 
weight are correct for sufficiently large N, we have: 

Proposition 2.  Let A = kAo + (1 - k)Al and@ integers M,  N with N > 2M + 1. Let 
E ( p )  be the eigenvalues of H&M,N diagonalized in the subspace BA c BPN. Select those 
eigenvectors for which ( E @ )  - E ( p ) )  6 M .  The corresponding set of paths f o r m  part of 
the crystal base B(A)  of V(A), specifically they span @ E, c E(A). 

1. -"j 

M 

n=0 
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4. Eigenvectors of CTMs as weight vectors 

The main aim of this section is to give a precise sense in which the (JTM provides a finite- 
size approximation to the derivation d of U, m, and its eigenvectors to weight vectors. 
We shall show that the set of weight vectors with weights A - ma1 - n8, for arbitrary n 
may be approximated by diagonalizing HCTM,N on a sufficiently long chain with appropriate 
boundary conditions. The boundary conditions are applied by diagonalizing a restriction of 
H ~ M , N  to the subspace WA C YeN spanned by states which satisfy the boundary condition. 
Only the last two-site operator, HN-L. is involved in this restriction. Its off-diagonal parts, 
which only connect vectors in different subspaces WA, is discarded. The restriction of HN-1 
to WA is therefore diagonal, a fact which we need below. is just a finite matrix, 
and our sense of approximation is with respect to an inner product which we now define. 
Recall that Hj = @t(Cj), where Cj = A(C). Explicitly, 

cj = q(tj+1@ t,) + q-YtZ1 8 t,?) + (q - 4-92 

x (fi+lej+l 8 5:' +$+I @ fie) +ej+l @ fi + fi+itj+i @ t,?ej). (4.1) 

For the six-vertex case, H ~ M J  is a real symmetric matrix for real q if we simply declare 
the basis vectors Vk of (2.4) to be OrthOnOImal and employ the induced inner product in 
V:". For general I ,  we see from (5.4) that we could normalize the basis vectors uk so 
that (Uk-lleuk) = (t-'eUkltJk-l) and (uklfvk-1) = (ftuk-lluk) and this will symmenise 
H ~ M , N .  However, we choose not to do so: ( I ) is the standard inner product with the 
consequence that for 1 > 1,  HCTM.N has distinct right and left eigenvectors which form a 
bi-orthogonal set. They become weight vectors of right and left modules as N --f 00. 

Proposition 3. Let A be a level4 dom'nant integral weight with corresponding ground 
state YA. Choose M E Z and consider the eigenvectors of the chain H ~ , N  diagonalized 
on N E Z, N > M +  1 sites subject to thefrred boundary condition P N  = ( F A ) N .  Let (I@)) 
be the set of those eigenvectors which_correspond, as q + 0, to paths p E P(h) agreeing 
with the ground state FA at sites j > M. Then the commutation relations (2.3d) are satisfied, 
modqZN-2M-1, on the subspace spanned by (I@)], with d replaced by H ~ M , N .  

Proof. Fix M and let S be the set of states defined in the proposition. For brevity we shall 
identify the elementary tensor product ujM @. . . @ uj, with the path in P(A) which labels its 
components. Consider the commutation relation [d ,  eo] = eo. I t  is sufficient to show that 

) (4.2) 

for any pair of states from S and any integer N > M. For this we use (2.20) for HCTM,N-I 
and treat the resniction of HN-I separately. Remembering that the latter is diagonal, we 
get 

ZN-2M-1 (@~([HcTM.N,  e01 -eo)@') = 0 (modq 

( @ ~ ( [ H C T M , N , ~ ~ ~ - ~ O ) @ ' )  = ( N -  1)(@11N@eO,N-l @ lN-Z".@ I,@') 
(4.3) + ( N  - l ) (@lIH~-1,  I N  meo.N-1 @ 1 N - 2 ' " @  111@'). 

Next, we need to expand the states I@) in powers of q:  
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The overall normalization of H, does not affect the expansion (4.4), nor is it relevant for 
the normalization of the states. Therefore we replace Hi by Hi" + EH,!, where H; and 
q. are independent of q with 6 = O(q). - H," is the q = 0 limit defined in (4.1) and is 
diagonal on the paths while H/ has only off-diagonal entries. Examination of (5.4) shows 
that the action of the off-diagonal part H/ on a given path { P N ,  . . . , P I )  is to produce paths 
{ph ,  . . . , p ; }  with pi = pi, i # j + 1, j ,  and pi+, + pi = pj+l + p j .  In the terminology 
of [ZO], each path p' differs from p by an inversion. consists of a single path: this 
was the subject of propositions 1 and 2. Every path in differs fiom I@(')) by at least 
k inversions. 

Now consider the right-hand side of (4.3). It is the sum of contributions from the 
coefficients of the individual paths in I@') and I@). The operator eN-l connects only those 
paths which differ by f l  at the site N - 1. The non-zero contributions therefore come from 
just those paths in and I@'(v)) which are 'linked' in this way. Since the paths I@(@) 
and agree with the ground state path on sites j > M ,  and the operators H/ can 
only create transpositions at adjacent pairs of sites, it is evident that the minimum number 
of transpositions necessary to make the link is 2N - 2M - 1, so that the integers k, k' 
must satisfy k + k' > 2N - 2M - 1. Thus the result is proved for eo. Obviously the same 
argument applies to the other Chevalley generators. In this regard, note that the imposition 

0 

Proposition 4. Let A = kAo + ( E  - k)Al be a level-1 d o m i m  integral weight with 
corresponding ground state BA. Choose M Md N, N > 2M + 1. Let [I@)) be the set 
of eigenvectors which correspond, as q + 0, to the crystal base vectors of proposition 

2. Then they provide, m ~ d q ~ " - ~ ~ - ' ,  a basis of the weight spaces @ V, c V(A) in the 

decomposition (4.21). 

Proof. This follows immediately from propositions 2 and 3. Proposition 2 guarantees the 
correct identification in the l i t  q + 0. Proposition 3 ensures that it survives to finite q, 

of boundary conditions breaks the exact U, (612) symmetry of H ~ M , N .  

M 

n=@ 

mod qZN-4M-1 0 

5. Structure of the eigenvectors and vertex operators 

For calculating quantities of physical interest beyond the one-point functions, one must 
have precise information about the structure of the eigenvectors. Such information follows 
from the identification of the eigenvectors with weight vectors of irreducible modules via 
the vertex operator construction. In this section we will give a brief description of the 
construction and its relation to the finite-size approximation properties of Hcm,~.  

Let A = kAo + ( I  - k)Al ,  and write A' = (1 - k)Ao -t kA1. The ground state path 
BA E "(A) (respectively, PA, E ?(A')) has j j  = k for odd j (respectively, even j )  
and p j  = ( I  - k )  for even j (respectively, odd j ) .  If we diagonalize H ~ M . N  on a chain 
of length N - 1 with the boundary condition that P N - ~  = ( ~ A , ) N - ; ,  we obtain a finite- 
size approximation to the module V(A') on the subspace WA, c qeN-' selected by the 
boundary condition. Now the tensor product WAr 8 VI is the subspace WA c qeN selected 
by the boundary condition p~ = ( I j k ) ~ .  So we may diagonalize H ~ M , N  on this space to 
obtain a finitesize approximation to V(A). Moreover, we may use as the basis vectors the 
tensor products I@) 8 y, where I@) are the previously found eigenvectors and uw are the 
basis of VI. Note that because of the order of the terms in W ,  8 Vj, it will be necessary 
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to increment the site labels in the components of 116.). This construction is the finite-size 
approximation to the vertex operator construction. Essentially it gives a description of the 
eigenvectors in which the state at just the first site is made explicit. Unlike the expansion 
in paths where the state at every site is made explicit, there is no problem in this case in 
developing a convergent theory for N + CO. 

definitions for the vertex operators. These are intertwiners 
of either U: or U, & modules. Here we need the 'type I' vertex operators 
6;' : V(h) + p(p) @ V which are treated in some detail in [27]. In the case that 
V is the standard module V,, we write 

We turn to the necess 

Here ?(p) is a completion of V @ ) ,  but we shall not worry about this, simply omitting the 
hat and assuming the necessary completion. The sum is restricted to those combinations 
of n and . for which V ( p )  has non-zero weight spaces, and so is bounded above in n. 
Since 6; expresses a given weight vector in V(A) in terms of vectors from various weight 
spaces of V ( p ) ,  we may speak of the weight components (6fV),"uv of the map. The most 
important results of [Zflfor OUT purpose are that the type I vertex operators preserve the 
crystal base, and that for the level-1 U, 0 modules V(A), the admissible pairs of highest 
weights h, f i  arc of the form A = kAo + (1 - k)A1, A' = (1 - k)Ao + k ambdal, which 
we already used. The weight component which maps U A  to UAP €3 q has no other entries 
for this maximum value of n,  and we may normalize the vertex operator by choosing its 
coefficient: 

J 

(5.2) - A'V 
@A UI\ = UAr €3 v k  + .". 

Together with the intertwining property this uniquely determines 6;'". 
we come to the main result of this section. we may regard 6;'' as a matrix 

with an infinite number of finite-dimensional weight component blocks. It is evident 
from proposition 4 that the finitedimensional matrix which effects the basis change 
needed to diagonalize H ~ . N  relative to the basis of WA, €3 V, obtained by using the 
eigenvectors of HQM.N-I in W A ~ ,  preserves the algebra action, ~ n o d q ~ ~ - ~ ~ - ' .  Hence 

M 

n=O 
those blocks of the matrix which transform the bases between @ V, c V(A) and 
M-1 

n=O 
again Formally stated. 

Proposition 5. Let A, A' be level-1 dominant integral weights as dejined above. Choose 
M and N ,  N > 2M + 1. Let {I@)], {I@')) be the sets of eigenvectors of H ~ M , N .  H ~ M , N - I  
as defined in proposition 4, and use them as the basis vectors of WA and WAL Consider 
the change of basis matrix from WA io WA) @ V,. Then, with an appropriate choice of 
normalization, the entries which connect the finitedimensional subspaces fB V, c V(A) 

and ns Vi C V(A') are equal, modq2N-4M-1, to the entries of the appropriate weight 

components of 62" in the same bases. 

fB Vi  €3 V, C VCA') @ V, must be the corresponding finitedimensional pieces of 6 f v ,  

M 

n=O M-I 
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6. Connection with Baxter’s original arguments for CTMS 

In a recent paper [2l]the XXZ Hamiltonian spin chain is diagonalized using the weight 
vectors of the modules V(Ao), V(A1). In particular, the ground state eigenvector is 
identified with the ‘canonical element’ of the tensor product V(A0) 8 V”“(&), and thus 
related tolhe eigenvectors of the CTM. Baxter’s original argument, whereby he derived the 
remarkable properties of CTMS, also comes from such a construction. In this section we 
examine the relationship between the two constructions, restricting our attention to the IMZ 
case. 

Baxter considers ([31], p 375) the product of two CTMS which represents an infinite 
half-plane. He argdes that the entries in this product should be, in the limit of large system 
size, the same as the entries in the maximal eigenvector of the corresponding spin chain for 
a single row of spins. Let us, in the spirit of Baxter’s argumenf write this as 

(6.1) 1 = B(A - u)A(u), 

where Y is the ground state of the spin chain, A and B are CRJls, U is the spectral parameter, 
and A is the crossing parameter. It is related to q by q = exp(-A). In (6.1) the row and 
column indices of the matrix product label the spin indices in Y to the right and left in the 
chain. There is no site with the labd j = 0. 

We want to use the exponentiation property A(u) = exp(uH) to represent the CTMS. 
(Recall that the ground state of our spin chain has maximal eigenvalue.) The condition for 
the exponentiation to apply is that the BO~~ZIMM weigh’s satisfy the Ymg-Baxter relations 
and also have the rotational symmetry that the replacement U + A - U is equivalent to 
a 90” rotation. The eight-vertex model enjoys these properties, and the six-vertex model 
is obtained from it by setting two of the weights to zero. There are two possible choices 
for this, represented by setting k = 0 (the elliptic modulus) in either equations (10.4.21) 
or (13.3.9) of 1311. The former choice is the usual one, used in this paper. However, 
only the latter choice retains the necessary rotational property. This is discussed in some 
detail in [28], where it is shown that the two may be related using spin reversal. One must 
reverse the spins along every second diagonal line, and this can be achieved by similarity 
transformation using spin reversal operators Rj for site j .  Thus we write 

The reason for the use of Rzj-1 in one place is that to retain consistency with (6:1), the 
spin reversal must be for every alternate site of 1. The point is that the chosen diagonal 
direction is different for the two CTMS. We have not yet specified the Hamiltonian generator 
H. Obviously it is the spin chain HXZ, after the spin reversal. Namely, 

(6.3) 

The outcome is that we may transform (6.1) to exponentiated form. We use (2.34) to write 
it in terms of H c ~ :  

m 
Y = RqZHm+S R = n R , .  (6.4) 

j=1 
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To complete the argument, we must make an eigenfunction expansion of the right-hand 
side of (6.4). Thus we write 

\I, = ~ ~ q 2 ' E " E o ) ~ $ k ) ( $ k ~ .  (6.5) 

In the sum, & are eigenvalues of H x ~ ,  EO being the ground-state eigenvalue, while l$k) 
and ($kl are right and left eigenvectors. Recall that the dual space carries a right module 
representation Vr(A), and that there is a canonical pairing defined by 

(u* lu*)  = 1 (ulxu) = (uxlu) v x  E U, 0. (6.6) 

There is also a left module action defined on the dual space via the antipode (2.3e). That 
is. the left action of x on U', denoted xu*, is given by 

(XU*, U) = (U*, &)U).  

k 

(6.7) 

This is used in [21]to define the dual modules Vw(A). One sees from section 6.7 of 
that paper, in particular from the proof of proposition 6.2 therein, that the factor qz(Ek-Eo) 
together with spin reversal is exactly what is required to replace the left eigenvectors (&I 
by the corresponding weight vectors U; in the dual module. At the same time, we replace 
I$k) by UL. So we conclude that Baxter's construction (6.1) is equivalent to that of [21], 
namely 

which is the canonical element of V(A0) 63 VM(A0), namely the identity map from V(A0) 
to V(A0). 

7. Concluding comments 

It is evident that the quantum affine symmetry, together with the vertex operator construction, 
gives a method to construct the eigenvectors of the CrMs and thereby to calculate correlation 
functions. That is, one may generalize Baxter's trace formula for one-point functions to 
formulae for n-point functions. Given an operator L acting on the tensor product Vp"", and 
CTMs A(u),  I . ,  D(u) for the four quadrants of the plane lattice, the expectation values of 
the matrix elemens of L are 

(7.1) 

Using the vertex operator construction to expose the dependence of the weight vectors 
on the local variables at the N chosen sites, and the identification of the CTM generator 
with the derivation operator d, this translates to the evaluation of certain traces over the 
representations. Rapid progress is being made in this endeavour [22,37,38]; for details, we 
refer the reader to those papers. 

In one of the original papers on CTMs [l], Baxter observes that there is no king-lie 
reduction in the six- and eight-vertex models. He wrote: 

A rather ambitious hope is that by examining the UMS we may stumble on such a 
group, that the solution of the models may thereby be simplified ... 

SN,"..S, 

(L)$;:::;: = [tr(LABCD)/tr(ABCD)] .-N."'.rt 
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Clearly such a group has been found, at least in the anti-ferromagnetic regime. Moreover, 
one may confidently expect that this discovery is just the tip of an iceberg. In this paper we 
have shown that, for certain models associated with U, (612). the quantum affine symmetry 
conjectured in [2O]is indeed an exact infinitedimensional symmetry. We have also shown 
that this symmetry may be treated, in a precise way, as the limit of operations on systems 
of finite size. 

In the case of the six-vertex model, the representations needed to evaluate the traces in 
(7.1) are level-I, and there is a boson construction of the irreducible modules due to Frenkel 
and Jing [39]. Using it, Jimbo et a6 have given general expressions for the expectation values 
[22], and have recovered in particular the formula for the spontaneous staggered polarization 
(N = 1). A remarkable feature of this new calculation is that it is the first re-derivation of 
Baxter's original result [40], despite the endeavours of almost twenty years. The extension 
of these calculations to 1 > 1 is not trivial, since it depends on having sufficiently tractable 
presentations of the level-l irreducible modules V ( h ) .  

However, in a very recent work [38], J i b 0  et a1 have shown that correlation functions 
of the type (7.1) satisfy systems of difference equations. One may~seek solutions of these 
equations without explicitly constructing the relevant representations. Moreover, based on 
a conjechlre about the possibility of extending the vertex operator construction to lattice 
systems which have elliptic paramehisation, these difference equations have been extended 
to the eight-vertex model. In this way, the conjectured formula [4l]for the spontaneous 
staggered polarization of the eight-vertex model has also been recovered. Unlike the six- 
vertex case, this is the first derivation of the eight-vertex result. One of the postulates which 
forms an essential ingredient for the derivation of difference equations is the possibility of 
using an approximate vertex operator construction on a finite system and then taking the 
infinite limit. It is one of the results of this paper that such constructions are indeed possible. 

In conclusion, let us emphasise that it is not a result of this paper that all the eigenvectors 
of a truncated CTM operator approximate weight vectors of a level-l module, with grading 
levels approximated by the corresponding CTM eigenvalues. This is clearly impossible 
since all the vectors belong to a finite tensor product of level-0 modules. The statement of 
proposition 4 gives the correct picture: if one holds fixed the maximum grading level M and 
the parameter 4, then there is convergence as the length N of the chain increases4 purely 
asymptotic result. For a particular expansion to given order qt, one might contemplate 
holding the quantity L = 2N - 4M - 1 constant. But then one readily sees that the 
fraction of eigenvectors whose grading level does not exceed M, the only ones which 
contribute to the chosen order, rapidly diminishes as N increases. This is why the tensor 
product of N copies of a level-0 module can provide increasingly accurate approximations 
to the weight vectors of a level-1 module: with increasing N ,  a decreasing fraction of the 
totality of eigenvectors are involved at any given level of approximation. This non-uniform 
asymptotic property is almost certainly related to the difficulties in defining the CTMS as 
renormalized infinite-dimensional operators, or in explicitly constructing their ground state 
eigenstates. Even if it is not possible to give a satisfactory renormalization scheme in which 
H ~ M , ~  is defined either as limn~m(H~M,N-EN(r?i\)), or order by order in a perturbation 
expansion, the low-lying eigenstates of the truncated CTMs are 'good' eigenstates; they 
correctly reconsmct the level-l modules with arbitrary precision. And for the computation 
of any physical quantity as a q-expansion, that is all we need. 
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